Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Michael Kirka
- Soydan Ozcan
- Vincent Paquit
- Xianhui Zhao
- Aaron Werth
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Gary Hahn
- Halil Tekinalp
- Harper Jordan
- James Haley
- Jason Jarnagin
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Kitty K Mccracken
- Mark Provo II
- Nance Ericson
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Raymond Borges Hink
- Rob Root
- Roger G Miller
- Sanjita Wasti
- Sarah Graham
- Srikanth Yoginath
- Sudarsanam Babu
- Tyler Smith
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.