Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Amit K Naskar
- Jaswinder Sharma
- Logan Kearney
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Blane Fillingim
- Brian Post
- Christopher Bowland
- Christopher Ledford
- Clay Leach
- David Nuttall
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- James Haley
- Jeremy Malmstead
- Kitty K Mccracken
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Sudarsanam Babu
- Sumit Gupta
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

The technologies described herein provides for the High Temperature Carbonization (HTC) in the manufacturing of carbon fibers (CF). The conventional method for HTC is based in thermal radiation and this technology uses in a liquid medium.