Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Michael Kirka
- Vincent Paquit
- Vipin Kumar
- Adam Stevens
- Alexandre Sorokine
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Dan Coughlin
- Daniel Adams
- David Nuttall
- James Haley
- Jessica Moehl
- Jim Tobin
- Josh Crabtree
- Kim Sitzlar
- Merlin Theodore
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Taylor Hauser
- Venkatakrishnan Singanallur Vaidyanathan
- Viswadeep Lebakula
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.