Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Corson Cramer
- Soydan Ozcan
- Steve Bullock
- Vlastimil Kunc
- Meghan Lamm
- Ryan Dehoff
- Ahmed Hassen
- Halil Tekinalp
- Umesh N MARATHE
- Beth L Armstrong
- Greg Larsen
- James Klett
- Katie Copenhaver
- Michael Kirka
- Steven Guzorek
- Trevor Aguirre
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Brian Post
- Christopher Ledford
- Dan Coughlin
- David Nuttall
- Georges Chahine
- Matt Korey
- Pum Kim
- Vincent Paquit
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Alice Perrin
- Amber Hubbard
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Ben Lamm
- Blane Fillingim
- Cait Clarkson
- Charlie Cook
- Christopher Hershey
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- James Haley
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- John Lindahl
- Jordan Wright
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).