Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andres Marquez Rossy
- Annetta Burger
- Blane Fillingim
- Cameron Adkins
- Carter Christopher
- Chance C Brown
- Christopher Ledford
- Clay Leach
- David Nuttall
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Isha Bhandari
- James Gaboardi
- James Haley
- Jeremy Malmstead
- Jesse McGaha
- Joshua Vaughan
- Kevin Sparks
- Kitty K Mccracken
- Liam White
- Liz McBride
- Michael Borish
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Todd Thomas
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
1 - 10 of 14 Results

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.