Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Michael Kirka
- Stephen M Killough
- Vincent Paquit
- Vipin Kumar
- Adam Stevens
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Christopher Ledford
- Clay Leach
- Corey Cooke
- Dan Coughlin
- David Nuttall
- Diana E Hun
- James Haley
- Jim Tobin
- Josh Crabtree
- Kim Sitzlar
- Merlin Theodore
- Nolan Hayes
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.