Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Alex Plotkowski
- Amit Shyam
- Alice Perrin
- James A Haynes
- Michael Kirka
- Sumit Bahl
- Vincent Paquit
- Yaosuo Xue
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Fei Wang
- Gerry Knapp
- James Haley
- Jovid Rakhmonov
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Phani Ratna Vanamali Marthi
- Philip Bingham
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Sunyong Kwon
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yonghao Gui
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.