Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Ryan Dehoff
- Alex Plotkowski
- Amit Shyam
- Jun Qu
- Michael Kirka
- Alexey Serov
- Alice Perrin
- Christopher Ledford
- Corson Cramer
- James A Haynes
- Jaswinder Sharma
- Meghan Lamm
- Peeyush Nandwana
- Rangasayee Kannan
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Vincent Paquit
- Xiang Lyu
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- Amit K Naskar
- Andres Marquez Rossy
- Ben Lamm
- Blane Fillingim
- Brian Post
- Bryan Lim
- Clay Leach
- David J Mitchell
- David Nuttall
- Ethan Self
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Holly Humphrey
- James Haley
- James Klett
- James Szybist
- Jonathan Willocks
- Jordan Wright
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Matthew S Chambers
- Michael Toomey
- Michelle Lehmann
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Philip Bingham
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Sunyong Kwon
- Todd Toops
- Tolga Aytug
- Trevor Aguirre
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.