Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Alexey Serov
- Jaswinder Sharma
- Michael Kirka
- Vincent Paquit
- Vipin Kumar
- Xiang Lyu
- Adam Stevens
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Andres Marquez Rossy
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- Dan Coughlin
- David Nuttall
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Haley
- James Szybist
- Jim Tobin
- Jonathan Willocks
- Josh Crabtree
- Junbin Choi
- Khryslyn G Araño
- Kim Sitzlar
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Todd Toops
- Venkatakrishnan Singanallur Vaidyanathan
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.