Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Mostak Mohammad
- Vandana Rallabandi
- Ryan Dehoff
- Erdem Asa
- Shajjad Chowdhury
- Vivek Sujan
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Gui-Jia Su
- Michael Kirka
- Veda Prakash Galigekere
- Vincent Paquit
- Adam Siekmann
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Riza Ekti
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Isabelle Snyder
- James Haley
- Lingxiao Xue
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Wireless charging systems need to operate at high frequency, at or near resonance, to maximize power transfer distance and efficiency. High voltages appear across the inductors and capacitors. The use of discrete components reduces efficiency, increases system complexity.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

ORNL has developed a revolutionary system for wirelessly transferring power to electric vehicles and energy storage systems, enabling efficient, contactless charging.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.