Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Ryan Dehoff
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Claire Marvinney
- Clay Leach
- David Nuttall
- Harper Jordan
- Isaac Sikkema
- James Haley
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Mingyan Li
- Nance Ericson
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.