Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Ryan Dehoff
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Callie Goetz
- Christopher Hobbs
- Christopher Ledford
- Claire Marvinney
- Clay Leach
- David Nuttall
- Eddie Lopez Honorato
- Fred List III
- Harper Jordan
- James Haley
- Joel Asiamah
- Joel Dawson
- Keith Carver
- Matt Kurley III
- Nance Ericson
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Butcher
- Tyler Gerczak
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.