Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Venugopal K Varma
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Mahabir Bhandari
- Michael Kirka
- Vincent Paquit
- Adam Aaron
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andres Marquez Rossy
- Blane Fillingim
- Cameron Adkins
- Charles D Ottinger
- Christopher Ledford
- Clay Leach
- David Nuttall
- Erin Webb
- Evin Carter
- Govindarajan Muralidharan
- Isha Bhandari
- James Haley
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergey Smolentsev
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Sudarsanam Babu
- Thomas R Muth
- Tyler Smith
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.