Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Ryan Dehoff
- Alex Plotkowski
- Alice Perrin
- Hongbin Sun
- James A Haynes
- Michael Kirka
- Sumit Bahl
- Vincent Paquit
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- David Nuttall
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Ilias Belharouak
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Sunyong Kwon
- Vipin Kumar
- Vishaldeep Sharma
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.