Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Radu Custelcean
- Chris Masuo
- Ryan Dehoff
- Costas Tsouris
- Peter Wang
- Alex Walters
- Gyoung Gug Jang
- Jeffrey Einkauf
- Vincent Paquit
- Amit Shyam
- Benjamin L Doughty
- Brian Gibson
- Bruce Moyer
- Clay Leach
- Gs Jung
- Joshua Vaughan
- Luke Meyer
- Michael Kirka
- Nikki Thiele
- Santa Jansone-Popova
- Udaya C Kalluri
- William Carter
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- David Nuttall
- Gordon Robertson
- Ilja Popovs
- J.R. R Matheson
- James Haley
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Singanallur Venkatakrishnan
- Subhamay Pramanik
- Sudarsanam Babu
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yingzhong Ma
- Yukinori Yamamoto

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.