Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Ryan Dehoff
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Hongbin Sun
- Michael Kirka
- Nikki Thiele
- Prashant Jain
- Santa Jansone-Popova
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Ian Greenquist
- Ilias Belharouak
- Ilja Popovs
- James Haley
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Nate See
- Nithin Panicker
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Singanallur Venkatakrishnan
- Subhamay Pramanik
- Sudarsanam Babu
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yingzhong Ma
- Yukinori Yamamoto

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and