Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ryan Dehoff
- Kyle Kelley
- Rama K Vasudevan
- Yong Chae Lim
- Michael Kirka
- Peeyush Nandwana
- Rangasayee Kannan
- Sergei V Kalinin
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anton Ievlev
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Post
- Bryan Lim
- Christopher Ledford
- Clay Leach
- David Nuttall
- James Haley
- Jiheon Jun
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Priyanshi Agrawal
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Steven Randolph
- Sudarsanam Babu
- Tomas Grejtak
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Zhili Feng

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.