Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ryan Dehoff
- Kyle Kelley
- Rama K Vasudevan
- Michael Kirka
- Sergei V Kalinin
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anton Ievlev
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Post
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- David Nuttall
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jong K Keum
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mina Yoon
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Steven Randolph
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.