Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Vincent Paquit
- Amir K Ziabari
- Diana E Hun
- Michael Kirka
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Sam Hollifield
- Stephen M Killough
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Brian Weber
- Bryan Maldonado Puente
- Christopher Ledford
- Clay Leach
- Corey Cooke
- David Nuttall
- Gina Accawi
- Gurneesh Jatana
- Isaac Sikkema
- James Haley
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mary A Adkisson
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- T Oesch
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).