Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Michael Kirka
- Ruhul Amin
- Vincent Paquit
- Vipin Kumar
- Xiang Lyu
- Adam Stevens
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Andres Marquez Rossy
- Ben LaRiviere
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- Dan Coughlin
- David L Wood III
- David Nuttall
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Haley
- James Szybist
- Jim Tobin
- Jonathan Willocks
- Josh Crabtree
- Junbin Choi
- Khryslyn G Araño
- Kim Sitzlar
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paul Groth
- Peeyush Nandwana
- Philip Bingham
- Pradeep Ramuhalli
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Todd Toops
- William Peter
- Yan-Ru Lin
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.