Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Sergiy Kalnaus
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Beth L Armstrong
- Blane Fillingim
- Brad Johnson
- Brian Post
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Georgios Polyzos
- Hsin Wang
- James Haley
- James Klett
- Jaswinder Sharma
- John Lindahl
- Mike Zach
- Nancy Dudney
- Nedim Cinbiz
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Tony Beard
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.