Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Lauren Heinrich
- Michael Kirka
- Rishi Pillai
- Steven J Zinkle
- Thomas Feldhausen
- Vincent Paquit
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- Clay Leach
- David Nuttall
- Eric Wolfe
- Frederic Vautard
- James Haley
- Jiheon Jun
- Marie Romedenne
- Meghan Lamm
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Philip Bingham
- Priyanshi Agrawal
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Tim Graening Seibert
- Tolga Aytug
- Vimal Ramanuj
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.