Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Ryan Dehoff
- Kyle Kelley
- Rama K Vasudevan
- Alexey Serov
- Jaswinder Sharma
- Michael Kirka
- Sergei V Kalinin
- Stephen Jesse
- Vincent Paquit
- Xiang Lyu
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Beth L Armstrong
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Haley
- James Szybist
- Jamieson Brechtl
- Jewook Park
- Jonathan Willocks
- Junbin Choi
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Saban Hus
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Todd Toops
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.