Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Chris Tyler
- Justin West
- Ryan Dehoff
- Brian Post
- Ritin Mathews
- Blane Fillingim
- Peeyush Nandwana
- Sudarsanam Babu
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Lauren Heinrich
- Michael Kirka
- Scott Smith
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Brian Gibson
- Calen Kimmell
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Emma Betters
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- James Haley
- Jesse Heineman
- John Potter
- Josh B Harbin
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Tony L Schmitz
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.