Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ryan Dehoff
- Vincent Paquit
- Clay Leach
- Josh Michener
- Michael Kirka
- Xiaohan Yang
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrzej Nycz
- Austin Carroll
- Blane Fillingim
- Brian Post
- Carrie Eckert
- Christopher Ledford
- David Nuttall
- Diana E Hun
- Easwaran Krishnan
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Haley
- James Manley
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joe Rendall
- John F Cahill
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Kyle Davis
- Liangyu Qian
- Mengjia Tang
- Muneeshwaran Murugan
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Serena Chen
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Tomonori Saito
- Udaya C Kalluri
- Vilmos Kertesz
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto
- Zoriana Demchuk

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.