Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andres Marquez Rossy
- Blane Fillingim
- Cameron Adkins
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Daniel Adams
- David Nuttall
- Erin Webb
- Evin Carter
- Isha Bhandari
- James Haley
- Jeremy Malmstead
- Jessica Moehl
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Taylor Hauser
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.