Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Alexey Serov
- Jaswinder Sharma
- Michael Kirka
- Vincent Paquit
- Xiang Lyu
- Aaron Werth
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Andres Marquez Rossy
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Emilio Piesciorovsky
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Holly Humphrey
- James Haley
- James Szybist
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Raymond Borges Hink
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- Todd Toops
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.