Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Sam Hollifield
- Chad Steed
- Junghoon Chae
- Michael Kirka
- Mingyan Li
- Travis Humble
- Vincent Paquit
- Aaron Werth
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Brian Weber
- Christopher Ledford
- Clay Leach
- David Nuttall
- Emilio Piesciorovsky
- Gary Hahn
- Harper Jordan
- Isaac Sikkema
- James Haley
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Raymond Borges Hink
- Rob Root
- Roger G Miller
- Samudra Dasgupta
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- T Oesch
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto
11 - 17 of 17 Results

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.