Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Sergiy Kalnaus
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Georgios Polyzos
- Huixin (anna) Jiang
- James Haley
- Jamieson Brechtl
- Jaswinder Sharma
- Kai Li
- Kashif Nawaz
- Nancy Dudney
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.