Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Ruhul Amin
- Andrew F May
- Ben Garrison
- Brad Johnson
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- David L Wood III
- Georgios Polyzos
- Hongbin Sun
- Hsin Wang
- Huixin (anna) Jiang
- James Klett
- Jamieson Brechtl
- Jaswinder Sharma
- John Lindahl
- Junbin Choi
- Kai Li
- Kashif Nawaz
- Lu Yu
- Marm Dixit
- Mike Zach
- Nedim Cinbiz
- Pradeep Ramuhalli
- Tony Beard
- Xiaobing Liu
- Yaocai Bai
- Zhijia Du

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.