Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Peeyush Nandwana
- Amit Shyam
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alex Plotkowski
- Andres Marquez Rossy
- Bogdan Dryzhakov
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Christopher Rouleau
- Costas Tsouris
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jong K Keum
- Kai Li
- Kashif Nawaz
- Kyle Kelley
- Mina Yoon
- Peter Wang
- Radu Custelcean
- Ryan Dehoff
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaobing Liu
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.