Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Corson Cramer
- Steve Bullock
- Beth L Armstrong
- Chris Masuo
- Peter Wang
- Alex Walters
- Amit Shyam
- Greg Larsen
- James Klett
- Jun Qu
- Trevor Aguirre
- Alex Plotkowski
- Brian Gibson
- James A Haynes
- Joshua Vaughan
- Luke Meyer
- Meghan Lamm
- Sumit Bahl
- Tomas Grejtak
- Udaya C Kalluri
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Alice Perrin
- Ben Lamm
- Bryan Lim
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Gordon Robertson
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nadim Hmeidat
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Sana Elyas
- Sergiy Kalnaus
- Shajjad Chowdhury
- Steven Guzorek
- Sunyong Kwon
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Ying Yang
- Yiyu Wang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.