Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Ali Passian
- Meghan Lamm
- Halil Tekinalp
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Matt Korey
- Pum Kim
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Ben Lamm
- Brian Post
- Cait Clarkson
- Claire Marvinney
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Harper Jordan
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Joel Asiamah
- Joel Dawson
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Srikanth Yoginath
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Varisara Tansakul
- Xianhui Zhao

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

As additive manufacturing technologies advance and 3D-printers get larger, there is a constant need for larger extruders with higher throughput to construct larger objects at reasonable time.

ORNL researchers have developed a new method for producing thermoset foam insulation with improved processing and installation outcomes.

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

This invention demonstrates the strong potential for hybridization of CNF with natural fibers for facile drying and inclusion of the CNF into polymer matrices for high performance composites.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.