Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Adam M Guss
- Singanallur Venkatakrishnan
- Vincent Paquit
- Ali Abouimrane
- Amir K Ziabari
- Josh Michener
- Philip Bingham
- Ruhul Amin
- Ryan Dehoff
- Xiaohan Yang
- Alex Walters
- Andrzej Nycz
- Austin Carroll
- Carrie Eckert
- Clay Leach
- David L Wood III
- Diana E Hun
- Georgios Polyzos
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Hongbin Sun
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jaswinder Sharma
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Junbin Choi
- Kyle Davis
- Liangyu Qian
- Lu Yu
- Mark M Root
- Marm Dixit
- Michael Kirka
- Obaid Rahman
- Paul Abraham
- Philip Boudreaux
- Pradeep Ramuhalli
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Yang Liu
- Yaocai Bai
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.