Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Vlastimil Kunc
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alex Walters
- Amy Elliott
- Cameron Adkins
- Clinton Stipek
- Dan Coughlin
- Daniel Adams
- Erin Webb
- Evin Carter
- Isha Bhandari
- Jeremy Malmstead
- Jessica Moehl
- Jim Tobin
- Josh Crabtree
- Joshua Vaughan
- Kim Sitzlar
- Kitty K Mccracken
- Liam White
- Merlin Theodore
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Taylor Hauser
- Tyler Smith
- Vipin Kumar
- Viswadeep Lebakula
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto
1 - 10 of 10 Results

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.