Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ali Passian
- Hongbin Sun
- Josh Michener
- Xiaohan Yang
- Alex Walters
- Andrzej Nycz
- Austin Carroll
- Carrie Eckert
- Claire Marvinney
- Clay Leach
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Nance Ericson
- Paul Abraham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Serena Chen
- Srikanth Yoginath
- Udaya C Kalluri
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- Vishaldeep Sharma
- Yang Liu

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi