Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- William Carter
- Alexey Serov
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Hongbin Sun
- Jaswinder Sharma
- Luke Meyer
- Prashant Jain
- Xiang Lyu
- Adam Stevens
- Alex Walters
- Amit K Naskar
- Amy Elliott
- Beth L Armstrong
- Cameron Adkins
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- Isha Bhandari
- James Szybist
- Jeremy Malmstead
- Jonathan Willocks
- Joshua Vaughan
- Junbin Choi
- Khryslyn G Araño
- Kitty K Mccracken
- Liam White
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Toomey
- Michelle Lehmann
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Oluwafemi Oyedeji
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Todd Toops
- Tyler Smith
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and