Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Kashif Nawaz
- Joe Rendall
- Zhiming Gao
- Hongbin Sun
- Kai Li
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Eddie Lopez Honorato
- James Manley
- Jamieson Brechtl
- Kyle Gluesenkamp
- Mingkan Zhang
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Alexander Enders
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Bo Shen
- Brad Johnson
- Brandon A Wilson
- Brian Fricke
- Callie Goetz
- Charles F Weber
- Cheng-Min Yang
- Christopher Hobbs
- Christopher S Blessinger
- Costas Tsouris
- Easwaran Krishnan
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Huixin (anna) Jiang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mike Zach
- Mingyan Li
- Muneeshwaran Murugan
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nickolay Lavrik
- Nithin Panicker
- Oscar Martinez
- Pengtao Wang
- Pradeep Ramuhalli
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Troy Seay
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vittorio Badalassi

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.

The quality and quantity of refrigerant charge in any vapor compression-based heating and cooling system is vital to its energy efficiency, thermal capacity, and reliability.

Performance of heat exchangers greatly suffers due to maldistribution of fluid, which also impacts the performance of the entire HVAC system. One method to reduce fluid maldistribution is to improve the design of the manifold to make the flow evenly distributed.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.