Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Ying Yang
- Alex Walters
- Alexey Serov
- Alice Perrin
- Amit Shyam
- Brian Gibson
- Jaswinder Sharma
- Joshua Vaughan
- Luke Meyer
- Steven J Zinkle
- Udaya C Kalluri
- William Carter
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Alex Plotkowski
- Amit K Naskar
- Beth L Armstrong
- Bruce A Pint
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- J.R. R Matheson
- James A Haynes
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Riley Wallace
- Ritin Mathews
- Ritu Sahore
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Yan-Ru Lin

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.