Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Ryan Dehoff
- Vincent Paquit
- Adam Stevens
- Akash Jag Prasad
- Alex Walters
- Amy Elliott
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Erin Webb
- Evin Carter
- Isha Bhandari
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Meghan Lamm
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.