Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Yaosuo Xue
- Adam Stevens
- Alex Walters
- Amy Elliott
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Cameron Adkins
- Erin Webb
- Evin Carter
- Fei Wang
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Meghan Lamm
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Sreenivasa Jaldanki
- Steven J Zinkle
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yonghao Gui
- Yukinori Yamamoto
- Yutai Kato

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.