Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Emilio Piesciorovsky
- Yaosuo Xue
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ali Riza Ekti
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Elizabeth Piersall
- Eve Tsybina
- Fei Wang
- Gary Hahn
- Meghan Lamm
- Nils Stenvig
- Ozgur Alaca
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Raymond Borges Hink
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Steven J Zinkle
- Subho Mukherjee
- Suman Debnath
- Sunil Subedi
- Tim Graening Seibert
- Tolga Aytug
- Viswadeep Lebakula
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Yarom Polsky
- Ying Yang
- Yonghao Gui
- Yutai Kato

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.