Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- William Carter
- Alex Roschli
- Ali Abouimrane
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Ruhul Amin
- Adam Stevens
- Alex Walters
- Amy Elliott
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Cameron Adkins
- David L Wood III
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Hongbin Sun
- Isha Bhandari
- Jaswinder Sharma
- Jeremy Malmstead
- Joshua Vaughan
- Junbin Choi
- Kitty K Mccracken
- Liam White
- Lu Yu
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Pradeep Ramuhalli
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato
- Zhijia Du

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.