Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Yaosuo Xue
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Callie Goetz
- Christopher Hobbs
- Eddie Lopez Honorato
- Fei Wang
- Fred List III
- Keith Carver
- Matt Kurley III
- Meghan Lamm
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Steven J Zinkle
- Suman Debnath
- Sunil Subedi
- Thomas Butcher
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yonghao Gui
- Yutai Kato

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.