Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Ruhul Amin
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Callie Goetz
- Christopher Hobbs
- David L Wood III
- Eddie Lopez Honorato
- Fred List III
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Junbin Choi
- Keith Carver
- Lu Yu
- Marm Dixit
- Matt Kurley III
- Meghan Lamm
- Pradeep Ramuhalli
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Shajjad Chowdhury
- Steven J Zinkle
- Thomas Butcher
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Yaocai Bai
- Ying Yang
- Yutai Kato
- Zhijia Du

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.