Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Yong Chae Lim
- Zhili Feng
- Alexey Serov
- Eddie Lopez Honorato
- Jaswinder Sharma
- Jian Chen
- Rangasayee Kannan
- Ryan Heldt
- Tyler Gerczak
- Wei Zhang
- Xiang Lyu
- Adam Stevens
- Amit K Naskar
- Beth L Armstrong
- Brian Post
- Bryan Lim
- Callie Goetz
- Christopher Hobbs
- Dali Wang
- Fred List III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jiheon Jun
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Peeyush Nandwana
- Priyanshi Agrawal
- Richard Howard
- Ritu Sahore
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Thomas Butcher
- Todd Toops
- Tomas Grejtak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.