Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Yong Chae Lim
- Amir K Ziabari
- Hongbin Sun
- Philip Bingham
- Rangasayee Kannan
- Vincent Paquit
- Adam Stevens
- Brian Post
- Bryan Lim
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- Jiheon Jun
- Mark M Root
- Michael Kirka
- Obaid Rahman
- Peeyush Nandwana
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Vishaldeep Sharma
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.