Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Hongbin Sun
- Rangasayee Kannan
- Adam Stevens
- Brian Post
- Bryan Lim
- Christopher Hobbs
- Eddie Lopez Honorato
- Ilias Belharouak
- Jiheon Jun
- Matt Kurley III
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Rodney D Hunt
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Tyler Gerczak
- Vishaldeep Sharma
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.