Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Yong Chae Lim
- Ali Abouimrane
- Rangasayee Kannan
- Ruhul Amin
- Adam Stevens
- Ben Lamm
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- Bryan Lim
- David L Wood III
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Jiheon Jun
- Junbin Choi
- Lu Yu
- Marm Dixit
- Meghan Lamm
- Peeyush Nandwana
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Steven J Zinkle
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yaocai Bai
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhijia Du
- Zhili Feng

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.