Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Alexey Serov
- Amit Shyam
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Xiang Lyu
- Yousub Lee
- Akash Jag Prasad
- Alex Plotkowski
- Amit K Naskar
- Andres Marquez Rossy
- Beth L Armstrong
- Bruce A Pint
- Bryan Lim
- Calen Kimmell
- Canhai Lai
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- James Haley
- James Parks II
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Peter Wang
- Ritu Sahore
- Steven J Zinkle
- Tim Graening Seibert
- Todd Toops
- Tomas Grejtak
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.